Решение задач по закону кирхгофа онлайн

Законы Кирхгофа. Расчет цепей постоянного тока

В электротехнике существует два основных закона, на основании которых, теоретически можно решить все цепи.
 

Первый закон Кирхгофа выглядит следующим образом.
Сумма токов, входящих в узел, равна сумме токов, отходящих от узла.
 

 

Для данного рисунка имеем:
I1 + I2 + I4 = I3 + I5.
 

Второй закон Кирхгофа.
Сумма напряжений вдоль замкнутого контура равна сумме ЭДС вдоль этого же контура. Для схемы на рисунке (стрелкой обозначим направление вдоль контура, которое будем считать условно положительным).
 

 

Начиная с узла, где сходятся токи I1, I3, I4 запишем все напряжения (по закону Ома):
-I1⋅R1 — I1⋅R2 – в первой ветви (знак минус означает, что ток имеет направление противоположное выбранному направлению контура).
I3⋅R3 – во второй ветви (знак «плюс», направление совпадает).
 

Теперь запишем ЭДС:
E2 — E3 (знак «минус» у E3, потому что направление ЭДС противоположно направлению контура).
 

В соответствии с законом Кирхгофа напряжения равны ЭДС:
-I1⋅R1 — I1⋅R2 + I3⋅R3 = E2 — E3.
 

Как видите, все довольно просто.
 

В большинстве случаев перед студентами стоит задача рассчитать величины токов во всех ветвях, зная величины ЭДС и резисторов. Для расчета сложной, разветвленной цепи постоянного тока, например этой, найденной на просторах интернета, воспользуемся следующими действиями.
 

 

Для начала задаемся условно положительными направлениями токов в ветвях (это значит, что ток может течь и в противоположном направлении, тогда он будет иметь отрицательное значение).
 

 

Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток (в данной схеме имеем 3 таких контура). Направления контуров выбираем для удобства по часовой стрелке (хоть это и необязательно):
 

 

По первому закону Кирхгофа составляем столько уравнений, чтоб охватить все неизвестные токи (в данной схеме для любых трех узлов):
 

 

Итого, имеем систему из 6 уравнений. Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:
 

 

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”).
MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров). Но, во-первых, функция “Given” не работает с комплексными числами (об этом позже), во-вторых, не всегда есть под рукой компьютер или условие задачи поставлено так, что требуется решить схему другим методом.
 

Данный метод решения задач называется методом непосредственного применения законов Кирхгофа. Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.